950=-16t^2+1500

Simple and best practice solution for 950=-16t^2+1500 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 950=-16t^2+1500 equation:



950=-16t^2+1500
We move all terms to the left:
950-(-16t^2+1500)=0
We get rid of parentheses
16t^2-1500+950=0
We add all the numbers together, and all the variables
16t^2-550=0
a = 16; b = 0; c = -550;
Δ = b2-4ac
Δ = 02-4·16·(-550)
Δ = 35200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{35200}=\sqrt{1600*22}=\sqrt{1600}*\sqrt{22}=40\sqrt{22}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{22}}{2*16}=\frac{0-40\sqrt{22}}{32} =-\frac{40\sqrt{22}}{32} =-\frac{5\sqrt{22}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{22}}{2*16}=\frac{0+40\sqrt{22}}{32} =\frac{40\sqrt{22}}{32} =\frac{5\sqrt{22}}{4} $

See similar equations:

| 4x-15=2(x+3)+7 | | x+7=-8x+97 | | 5x-18=30-x | | F(-3)=12-7x | | -2v-5=1-v | | 21a=(-7) | | 4x=10=14 | | 2(j)+5=60 | | -5v-10=6-6v | | 4x-8/x+2=0 | | 4(x – 3) = 12 | | -w+277=169 | | -u+98=249 | | x^2=108,000 | | 6(x-4)=x/2 | | 2w-18w=144 | | 170=5(5n-6 | | 94-u=181 | | 34.40x+24=34.64x+18.25 | | 1.5x-3(x-0.2)=15 | | 8n-(3n=7)=13 | | m3=54 | | 1+7(x+7)=141 | | 2.5q-4.4-4.9q=-1.4q-4.4 | | 0x0=123 | | 3^4x-5=9 | | -5=6+5a | | 4f+6+8f-7=2f-3 | | 18x-18=-2x+22 | | 141=1+7(x+7 | | 254=-y+27 | | -x/5+15=40 |

Equations solver categories